The count will display the count of unique values for a column in your data set. This helps you quickly view the count of variables in a tabular form. In this article, we will learn how to use the dplyr count function in R.
If you don’t have time to read, here is a quick code snippet for you.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
mtcars %>% count(mpg)
## mpg n
## 1 10.4 2
## 2 13.3 1
## 3 14.3 1
## 4 14.7 1
## 5 15.0 1
## 6 15.2 2
## 7 15.5 1
## 8 15.8 1
## 9 16.4 1
## 10 17.3 1
## 11 17.8 1
## 12 18.1 1
## 13 18.7 1
## 14 19.2 2
## 15 19.7 1
## 16 21.0 2
## 17 21.4 2
## 18 21.5 1
## 19 22.8 2
## 20 24.4 1
## 21 26.0 1
## 22 27.3 1
## 23 30.4 2
## 24 32.4 1
## 25 33.9 1
We can load the dplyr package directly, but I recommend loading the
tidyverse
package as we will use some other features in side.
library(tidyverse)
For this tutorial, we will use the mtcars
data set the comes with
tidyverse
. We take a look at this data set below.
data(mtcars)
glimpse(mtcars)
## Rows: 32
## Columns: 11
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~
To use the basic count function, we can call count
and pass the data
set and the column name we want to count.
count(mtcars, cyl)
## cyl n
## 1 4 11
## 2 6 7
## 3 8 14
We see that we get a data frame with the column and a count of unique variables per value. For example, there are 11 rows with cyl == 4.
Normally, we use the pipe, %>%, operator when working with tidyverse and dplyr. We can send your data set to the count function using this operator.
mtcars %>% count(cyl)
## cyl n
## 1 4 11
## 2 6 7
## 3 8 14
We can sort by count by using the sort
parameter and setting that to
TRUE.
mtcars %>% count(cyl, sort = TRUE)
## cyl n
## 1 8 14
## 2 4 11
## 3 6 7
We can sort by multiple columns by passing multiple column names. In this example below, we count the combination of cyl and hp.
mtcars %>% count(cyl, hp, sort = TRUE)
## cyl hp n
## 1 6 110 3
## 2 8 180 3
## 3 4 66 2
## 4 6 123 2
## 5 8 150 2
## 6 8 175 2
## 7 8 245 2
## 8 4 52 1
## 9 4 62 1
## 10 4 65 1
## 11 4 91 1
## 12 4 93 1
## 13 4 95 1
## 14 4 97 1
## 15 4 109 1
## 16 4 113 1
## 17 6 105 1
## 18 6 175 1
## 19 8 205 1
## 20 8 215 1
## 21 8 230 1
## 22 8 264 1
## 23 8 335 1
We can count by a computed columns as well. We could use the mutate
function, however, count
allows us to add a new column as well. Here
we calculate the ration of mpg to hp and sort by that ratio.
mtcars %>% count(mph_by_hp = mpg / hp)
## mph_by_hp n
## 1 0.04477612 1
## 2 0.04837209 1
## 3 0.05073171 1
## 4 0.05428571 1
## 5 0.05836735 1
## 6 0.05984848 1
## 7 0.06391304 1
## 8 0.08444444 1
## 9 0.09111111 1
## 10 0.09611111 1
## 11 0.10133333 1
## 12 0.10333333 1
## 13 0.10685714 1
## 14 0.10971429 1
## 15 0.11257143 1
## 16 0.14471545 1
## 17 0.15609756 1
## 18 0.17238095 1
## 19 0.19090909 2
## 20 0.19454545 1
## 21 0.19633028 1
## 22 0.22164948 1
## 23 0.24000000 1
## 24 0.24516129 1
## 25 0.26902655 1
## 26 0.28571429 1
## 27 0.39354839 1
## 28 0.41363636 1
## 29 0.49090909 1
## 30 0.52153846 1
## 31 0.58461538 1
We can performa a weighted count by using the wt
parameters. Here we
supply hp as a weight for our count.
mtcars %>% count(mpg, wt = hp)
## mpg n
## 1 10.4 420
## 2 13.3 245
## 3 14.3 245
## 4 14.7 230
## 5 15.0 335
## 6 15.2 330
## 7 15.5 150
## 8 15.8 264
## 9 16.4 180
## 10 17.3 180
## 11 17.8 123
## 12 18.1 105
## 13 18.7 175
## 14 19.2 298
## 15 19.7 175
## 16 21.0 220
## 17 21.4 219
## 18 21.5 97
## 19 22.8 188
## 20 24.4 62
## 21 26.0 91
## 22 27.3 66
## 23 30.4 165
## 24 32.4 66
## 25 33.9 65
Normally, the count function returns a data frame with the columns to
count and the count n
column. If we would like to keep all of our
columns, we can append the count n
column by using the add_count
method.
mtcars %>% add_count(mpg)
## mpg cyl disp hp drat wt qsec vs am gear carb n
## 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2
## 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 2
## 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 2
## 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 2
## 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 1
## 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1
## 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 1
## 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1
## 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 2
## 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 2
## 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1
## 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 1
## 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 1
## 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 2
## 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 2
## 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 2
## 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 1
## 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 1
## 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 2
## 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 1
## 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1
## 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 1
## 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 2
## 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 1
## 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 2
## 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 1
## 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 1
## 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 2
## 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1
## 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1
## 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1
## 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 2