The relocate method allows you to reorder the columns in a data set. The method is similar to select, but has some helpful methods for moving columns around. In this article, we will learn how to use the dplyr relocate method.
If you don’t have time to read, here is a quick code snippet for you.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
mtcars %>% relocate(cyl, .before = drat)
## mpg disp hp cyl drat wt qsec vs am gear carb
## Mazda RX4 21.0 160.0 110 6 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 160.0 110 6 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 108.0 93 4 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 258.0 110 6 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 360.0 175 8 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 225.0 105 6 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 360.0 245 8 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 146.7 62 4 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 140.8 95 4 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 167.6 123 6 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 167.6 123 6 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 275.8 180 8 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 275.8 180 8 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 275.8 180 8 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 472.0 205 8 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 460.0 215 8 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 440.0 230 8 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 78.7 66 4 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 75.7 52 4 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 71.1 65 4 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 120.1 97 4 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 318.0 150 8 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 304.0 150 8 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 350.0 245 8 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 400.0 175 8 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 79.0 66 4 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 120.3 91 4 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 95.1 113 4 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 351.0 264 8 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 145.0 175 6 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 301.0 335 8 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 121.0 109 4 4.11 2.780 18.60 1 1 4 2
We can load the dplyr package directly, but I recommend loading the
tidyverse
package as we will use some other features in side.
library(tidyverse)
For this tutorial, we will use the mtcars
data set the comes with
tidyverse
. We take a look at this data set below.
data(mtcars)
glimpse(mtcars)
## Rows: 32
## Columns: 11
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
## $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
## $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
## $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
## $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
## $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~
To use the relocate method, we can pass a dataset and the column name we would like to relocate. By default, the method will move the column to the front of our columns.
relocate(mtcars, wt)
## wt mpg cyl disp hp drat qsec vs am gear carb
## Mazda RX4 2.620 21.0 6 160.0 110 3.90 16.46 0 1 4 4
## Mazda RX4 Wag 2.875 21.0 6 160.0 110 3.90 17.02 0 1 4 4
## Datsun 710 2.320 22.8 4 108.0 93 3.85 18.61 1 1 4 1
## Hornet 4 Drive 3.215 21.4 6 258.0 110 3.08 19.44 1 0 3 1
## Hornet Sportabout 3.440 18.7 8 360.0 175 3.15 17.02 0 0 3 2
## Valiant 3.460 18.1 6 225.0 105 2.76 20.22 1 0 3 1
## Duster 360 3.570 14.3 8 360.0 245 3.21 15.84 0 0 3 4
## Merc 240D 3.190 24.4 4 146.7 62 3.69 20.00 1 0 4 2
## Merc 230 3.150 22.8 4 140.8 95 3.92 22.90 1 0 4 2
## Merc 280 3.440 19.2 6 167.6 123 3.92 18.30 1 0 4 4
## Merc 280C 3.440 17.8 6 167.6 123 3.92 18.90 1 0 4 4
## Merc 450SE 4.070 16.4 8 275.8 180 3.07 17.40 0 0 3 3
## Merc 450SL 3.730 17.3 8 275.8 180 3.07 17.60 0 0 3 3
## Merc 450SLC 3.780 15.2 8 275.8 180 3.07 18.00 0 0 3 3
## Cadillac Fleetwood 5.250 10.4 8 472.0 205 2.93 17.98 0 0 3 4
## Lincoln Continental 5.424 10.4 8 460.0 215 3.00 17.82 0 0 3 4
## Chrysler Imperial 5.345 14.7 8 440.0 230 3.23 17.42 0 0 3 4
## Fiat 128 2.200 32.4 4 78.7 66 4.08 19.47 1 1 4 1
## Honda Civic 1.615 30.4 4 75.7 52 4.93 18.52 1 1 4 2
## Toyota Corolla 1.835 33.9 4 71.1 65 4.22 19.90 1 1 4 1
## Toyota Corona 2.465 21.5 4 120.1 97 3.70 20.01 1 0 3 1
## Dodge Challenger 3.520 15.5 8 318.0 150 2.76 16.87 0 0 3 2
## AMC Javelin 3.435 15.2 8 304.0 150 3.15 17.30 0 0 3 2
## Camaro Z28 3.840 13.3 8 350.0 245 3.73 15.41 0 0 3 4
## Pontiac Firebird 3.845 19.2 8 400.0 175 3.08 17.05 0 0 3 2
## Fiat X1-9 1.935 27.3 4 79.0 66 4.08 18.90 1 1 4 1
## Porsche 914-2 2.140 26.0 4 120.3 91 4.43 16.70 0 1 5 2
## Lotus Europa 1.513 30.4 4 95.1 113 3.77 16.90 1 1 5 2
## Ford Pantera L 3.170 15.8 8 351.0 264 4.22 14.50 0 1 5 4
## Ferrari Dino 2.770 19.7 6 145.0 175 3.62 15.50 0 1 5 6
## Maserati Bora 3.570 15.0 8 301.0 335 3.54 14.60 0 1 5 8
## Volvo 142E 2.780 21.4 4 121.0 109 4.11 18.60 1 1 4 2
When working with dplyr and the tidyverse, we often use the pipe, %>% operator. With this, we can send the data set to our method to use. Here is a rewrite of the code above.
mtcars %>% relocate(wt)
## wt mpg cyl disp hp drat qsec vs am gear carb
## Mazda RX4 2.620 21.0 6 160.0 110 3.90 16.46 0 1 4 4
## Mazda RX4 Wag 2.875 21.0 6 160.0 110 3.90 17.02 0 1 4 4
## Datsun 710 2.320 22.8 4 108.0 93 3.85 18.61 1 1 4 1
## Hornet 4 Drive 3.215 21.4 6 258.0 110 3.08 19.44 1 0 3 1
## Hornet Sportabout 3.440 18.7 8 360.0 175 3.15 17.02 0 0 3 2
## Valiant 3.460 18.1 6 225.0 105 2.76 20.22 1 0 3 1
## Duster 360 3.570 14.3 8 360.0 245 3.21 15.84 0 0 3 4
## Merc 240D 3.190 24.4 4 146.7 62 3.69 20.00 1 0 4 2
## Merc 230 3.150 22.8 4 140.8 95 3.92 22.90 1 0 4 2
## Merc 280 3.440 19.2 6 167.6 123 3.92 18.30 1 0 4 4
## Merc 280C 3.440 17.8 6 167.6 123 3.92 18.90 1 0 4 4
## Merc 450SE 4.070 16.4 8 275.8 180 3.07 17.40 0 0 3 3
## Merc 450SL 3.730 17.3 8 275.8 180 3.07 17.60 0 0 3 3
## Merc 450SLC 3.780 15.2 8 275.8 180 3.07 18.00 0 0 3 3
## Cadillac Fleetwood 5.250 10.4 8 472.0 205 2.93 17.98 0 0 3 4
## Lincoln Continental 5.424 10.4 8 460.0 215 3.00 17.82 0 0 3 4
## Chrysler Imperial 5.345 14.7 8 440.0 230 3.23 17.42 0 0 3 4
## Fiat 128 2.200 32.4 4 78.7 66 4.08 19.47 1 1 4 1
## Honda Civic 1.615 30.4 4 75.7 52 4.93 18.52 1 1 4 2
## Toyota Corolla 1.835 33.9 4 71.1 65 4.22 19.90 1 1 4 1
## Toyota Corona 2.465 21.5 4 120.1 97 3.70 20.01 1 0 3 1
## Dodge Challenger 3.520 15.5 8 318.0 150 2.76 16.87 0 0 3 2
## AMC Javelin 3.435 15.2 8 304.0 150 3.15 17.30 0 0 3 2
## Camaro Z28 3.840 13.3 8 350.0 245 3.73 15.41 0 0 3 4
## Pontiac Firebird 3.845 19.2 8 400.0 175 3.08 17.05 0 0 3 2
## Fiat X1-9 1.935 27.3 4 79.0 66 4.08 18.90 1 1 4 1
## Porsche 914-2 2.140 26.0 4 120.3 91 4.43 16.70 0 1 5 2
## Lotus Europa 1.513 30.4 4 95.1 113 3.77 16.90 1 1 5 2
## Ford Pantera L 3.170 15.8 8 351.0 264 4.22 14.50 0 1 5 4
## Ferrari Dino 2.770 19.7 6 145.0 175 3.62 15.50 0 1 5 6
## Maserati Bora 3.570 15.0 8 301.0 335 3.54 14.60 0 1 5 8
## Volvo 142E 2.780 21.4 4 121.0 109 4.11 18.60 1 1 4 2
If we would like to get more specific, we can use the .after
parameter. To use this, we first pass the column we want to move,
followed by the .after parameter and the column we would like to have
before our specified column.
In this example, we can see that the disp
column is not relocated to
after the hp
column.
mtcars %>% relocate(disp, .after = hp)
## mpg cyl hp disp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 110 160.0 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 110 160.0 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 93 108.0 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 110 258.0 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 175 360.0 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 105 225.0 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 245 360.0 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 62 146.7 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 95 140.8 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 123 167.6 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 123 167.6 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 180 275.8 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 180 275.8 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 180 275.8 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 205 472.0 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 215 460.0 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 230 440.0 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 66 78.7 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 52 75.7 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 65 71.1 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 97 120.1 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 150 318.0 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 150 304.0 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 245 350.0 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 175 400.0 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 66 79.0 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 91 120.3 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 113 95.1 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 264 351.0 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 175 145.0 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 335 301.0 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 109 121.0 4.11 2.780 18.60 1 1 4 2
Similar to the above, we can use the before parameter instead of after to put a column before another. In this example, we move wt before hp.
mtcars %>% relocate(wt, .before = hp)
## mpg cyl disp wt hp drat qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 2.620 110 3.90 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 2.875 110 3.90 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 2.320 93 3.85 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 3.215 110 3.08 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 3.440 175 3.15 17.02 0 0 3 2
## Valiant 18.1 6 225.0 3.460 105 2.76 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 3.570 245 3.21 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 3.190 62 3.69 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 3.150 95 3.92 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 3.440 123 3.92 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 3.440 123 3.92 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 4.070 180 3.07 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 3.730 180 3.07 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 3.780 180 3.07 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 5.250 205 2.93 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 5.424 215 3.00 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 5.345 230 3.23 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 2.200 66 4.08 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 1.615 52 4.93 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 1.835 65 4.22 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 2.465 97 3.70 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 3.520 150 2.76 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 3.435 150 3.15 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 3.840 245 3.73 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 3.845 175 3.08 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 1.935 66 4.08 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 2.140 91 4.43 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 1.513 113 3.77 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 3.170 264 4.22 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 2.770 175 3.62 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 3.570 335 3.54 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 2.780 109 4.11 18.60 1 1 4 2
We can also change the name with the relocate function by specifying a
new name parameter. Although, there is the rename
method in dplyr
mtcars %>% relocate(horsepower = hp)
## horsepower mpg cyl disp drat wt qsec vs am gear carb
## Mazda RX4 110 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 110 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4
## Datsun 710 93 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 110 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 175 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2
## Valiant 105 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1
## Duster 360 245 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4
## Merc 240D 62 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2
## Merc 230 95 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2
## Merc 280 123 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4
## Merc 280C 123 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 180 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 180 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 180 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 205 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 215 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 230 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4
## Fiat 128 66 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1
## Honda Civic 52 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 65 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 97 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 150 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 150 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 245 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 175 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 66 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 91 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 113 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 264 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 175 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 335 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 109 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2
We can also use the select helpers when relocationg. A list of those methods are here: https://tidyselect.r-lib.org/reference/language.html. Let’s see some examples.
We can use last_col
with our relocate methods.
mtcars %>% relocate(hp, .after = last_col())
## mpg cyl disp drat wt qsec vs am gear carb hp
## Mazda RX4 21.0 6 160.0 3.90 2.620 16.46 0 1 4 4 110
## Mazda RX4 Wag 21.0 6 160.0 3.90 2.875 17.02 0 1 4 4 110
## Datsun 710 22.8 4 108.0 3.85 2.320 18.61 1 1 4 1 93
## Hornet 4 Drive 21.4 6 258.0 3.08 3.215 19.44 1 0 3 1 110
## Hornet Sportabout 18.7 8 360.0 3.15 3.440 17.02 0 0 3 2 175
## Valiant 18.1 6 225.0 2.76 3.460 20.22 1 0 3 1 105
## Duster 360 14.3 8 360.0 3.21 3.570 15.84 0 0 3 4 245
## Merc 240D 24.4 4 146.7 3.69 3.190 20.00 1 0 4 2 62
## Merc 230 22.8 4 140.8 3.92 3.150 22.90 1 0 4 2 95
## Merc 280 19.2 6 167.6 3.92 3.440 18.30 1 0 4 4 123
## Merc 280C 17.8 6 167.6 3.92 3.440 18.90 1 0 4 4 123
## Merc 450SE 16.4 8 275.8 3.07 4.070 17.40 0 0 3 3 180
## Merc 450SL 17.3 8 275.8 3.07 3.730 17.60 0 0 3 3 180
## Merc 450SLC 15.2 8 275.8 3.07 3.780 18.00 0 0 3 3 180
## Cadillac Fleetwood 10.4 8 472.0 2.93 5.250 17.98 0 0 3 4 205
## Lincoln Continental 10.4 8 460.0 3.00 5.424 17.82 0 0 3 4 215
## Chrysler Imperial 14.7 8 440.0 3.23 5.345 17.42 0 0 3 4 230
## Fiat 128 32.4 4 78.7 4.08 2.200 19.47 1 1 4 1 66
## Honda Civic 30.4 4 75.7 4.93 1.615 18.52 1 1 4 2 52
## Toyota Corolla 33.9 4 71.1 4.22 1.835 19.90 1 1 4 1 65
## Toyota Corona 21.5 4 120.1 3.70 2.465 20.01 1 0 3 1 97
## Dodge Challenger 15.5 8 318.0 2.76 3.520 16.87 0 0 3 2 150
## AMC Javelin 15.2 8 304.0 3.15 3.435 17.30 0 0 3 2 150
## Camaro Z28 13.3 8 350.0 3.73 3.840 15.41 0 0 3 4 245
## Pontiac Firebird 19.2 8 400.0 3.08 3.845 17.05 0 0 3 2 175
## Fiat X1-9 27.3 4 79.0 4.08 1.935 18.90 1 1 4 1 66
## Porsche 914-2 26.0 4 120.3 4.43 2.140 16.70 0 1 5 2 91
## Lotus Europa 30.4 4 95.1 3.77 1.513 16.90 1 1 5 2 113
## Ford Pantera L 15.8 8 351.0 4.22 3.170 14.50 0 1 5 4 264
## Ferrari Dino 19.7 6 145.0 3.62 2.770 15.50 0 1 5 6 175
## Maserati Bora 15.0 8 301.0 3.54 3.570 14.60 0 1 5 8 335
## Volvo 142E 21.4 4 121.0 4.11 2.780 18.60 1 1 4 2 109
We can also move all numeric characters to the front.
mtcars %>% relocate(where(is.numeric))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
We can do something similar to move all numeric to the end.
mtcars %>% relocate(where(is.numeric), .after = last_col())
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2